Чему равен бод. Смотреть что такое "Бод" в других словарях. Примеры употребления слова бод в литературе

26.11.2023

Максимальная скорость передачи данных без появления ошибок (пропускная способность) вместе с задержкой определяют производительность системы или линии связи. Теоретическая верхняя граница скорости передачи определяется теоремой Шеннона - Хартли .

Теорема Шеннона - Хартли

Рассматривая все возможные многоуровневые и многофазные методы кодирования, теорема Шеннона - Хартли утверждает, что ёмкость канала C , означающая теоретическую верхнюю границу скорости передачи информации, которые можно передать с данной средней мощностью сигнала S через один аналоговый канал связи, подверженный аддитивному белому гауссовскому шуму мощности N равна:

C = B log 2 ⁡ (1 + S N) {\displaystyle C=B\log _{2}\left(1+{\frac {S}{N}}\right)}

C - ёмкость канала в битах в секунду; B - полоса пропускания канала в герцах; S - полная мощность сигнала над полосой пропускания, измеренной в ваттах или вольтах в квадрате; N - полная шумовая мощность над полосой пропускания, измеренной в ваттах или вольтах в квадрате; S/N - отношение сигнала к гауссовскому шуму, выраженное как отношение мощностей.

Видео по теме

Единицы измерения

Бит в секунду

На более высоких уровнях сетевых моделей, как правило, используется более крупная единица - байт в секунду (Б/c или Bps , от англ. b ytes p er s econd ) равная 8 бит/c.

Зачастую, ошибочно, считают, что бод - это количество бит , переданное в секунду. В действительности же это верно лишь для двоичного кодирования, которое используется не всегда. Например, в современных модемах используется квадратурная амплитудная модуляция (QAM - КАМ), и одним изменением уровня сигнала может кодироваться несколько (до 16) бит информации. Например, при символьной скорости 2400 бод скорость передачи может составлять 9600 бит/c благодаря тому, что в каждом временном интервале передаётся 4 бита.

Кроме этого, бодами выражают полную ёмкость канала, включая служебные символы (биты), если они есть. Эффективная же скорость канала выражается другими единицами, например

Максимальная скорость передачи данных без появления ошибок (пропускная способность) вместе с задержкой определяют производительность системы или линии связи. Теоретическая верхняя граница скорости передачи определяется теоремой Шеннона - Хартли .

Теорема Шеннона - Хартли

Рассматривая все возможные многоуровневые и многофазные методы кодирования, теорема Шеннона - Хартли утверждает, что ёмкость канала C , означающая теоретическую верхнюю границу скорости передачи информации, которые можно передать с данной средней мощностью сигнала S через один аналоговый канал связи, подверженный аддитивному белому гауссовскому шуму мощности N равна:

C = B log 2 ⁡ (1 + S N) {\displaystyle C=B\log _{2}\left(1+{\frac {S}{N}}\right)}

C - ёмкость канала в битах в секунду; B - полоса пропускания канала в герцах; S - полная мощность сигнала над полосой пропускания, измеренной в ваттах или вольтах в квадрате; N - полная шумовая мощность над полосой пропускания, измеренной в ваттах или вольтах в квадрате; S/N - отношение сигнала к гауссовскому шуму, выраженное как отношение мощностей.

Единицы измерения

Бит в секунду

На более высоких уровнях сетевых моделей, как правило, используется более крупная единица - байт в секунду (Б/c или Bps , от англ. b ytes p er s econd ) равная 8 бит/c.

Зачастую, ошибочно, считают, что бод - это количество бит , переданное в секунду. В действительности же это верно лишь для двоичного кодирования, которое используется не всегда. Например, в современных модемах используется квадратурная амплитудная модуляция (QAM - КАМ), и одним изменением уровня сигнала может кодироваться несколько (до 16) бит информации. Например, при символьной скорости 2400 бод скорость передачи может составлять 9600 бит/c благодаря тому, что в каждом временном интервале передаётся 4 бита.

Кроме этого, бодами выражают полную ёмкость канала, включая служебные символы (биты), если они есть. Эффективная же скорость канала выражается другими единицами, например

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Значение слова бод

бод в словаре кроссвордиста

Словарь медицинских терминов

Энциклопедический словарь, 1998 г.

бод

единица скорости телеграфирования. Определяется как одна элементарная посылка тока за 1 с. Названа по имени Ж. Бодо.

Бод

единица скорости телеграфирования, равная количеству элементарных импульсов тока, передаваемых в секунду. Названа в честь французского изобретателя Ж. М. Бодо.

Википедия

Бод

Бод в связи и электронике - единица измерения символьной скорости, количество изменений информационного параметра несущего периодического сигнала в секунду. Названа по имени Эмиля Бодо, изобретателя кода Бодо - кодировки символов для телетайпов.

Зачастую ошибочно считают, что Бод - это количество бит , переданное в секунду. В действительности же это верно лишь для двоичного кодирования, которое используется не всегда. Например, в современных модемах используется квадратурная амплитудная модуляция, и одним изменением уровня сигнала может кодироваться несколько (до 16) бит информации. Например, при символьной скорости 2400 Бод скорость передачи может составлять 9600 бит/c благодаря тому, что в каждом временном интервале передаётся 4 бита.

Кроме этого, бодами выражают полную ёмкость канала, включая служебные символы, если они есть. Эффективная же скорость канала выражается другими единицами, например битами в секунду (бит/c, bps).

БОД

  • Бод - единица измерения символьной скорости
  • БОД - Библиографическое описание документов
  • БОД - Безусловный основной доход

Примеры употребления слова бод в литературе.

Она изменила образ иксера в сознании Койота - он увидел в Боде истинный свет.

Она рассказывала о ней так, что Боде тоже захотелось принять эту сладкую дурь.

Никто из драйверов понятия не имел, кто такой Колумб, ни даже как он выглядит, и Боде ужасно хотелось что-нибудь о нем узнать.

Кроме него, в пределах видимости никого нет, и он настолько худ, что Боде приходится посмотреть дважды, прежде чем она замечает его.

А еще я почему-то не могла перестать думать о Боде , девушке, затерявшейся в предсмертных видениях пса, таксиста с грязных улиц.

Джоанна подходит так близко, что там, где толстый слой косметики на ее лице смазался, Боде видна черная щетина.

Джоанна закрывает глаза и, как ни странно, улыбается Боде , когда они вместе начинают припев.

Последние страницы были заполнены признаниями в любви к Боде , а между ними был вложен клочок бумаги - послание в стихах псодрайверу, под которым стояла уверенная подпись Боды.

Я знала, что Боде сейчас восемнадцать и что она присоединилась к Улью, когда ей было девять.

Карта под чехлом парика покрывается потом, но Боде уютно в новой одежде.

Это становится особенно ощутимым при работе со скоростью передачи 2400 бод и выше.

Он прислоняется к водительской двери с сигаретой в зубах, слушает, как Гамбо Йо-Йо представляет следующую песню, смотрит на наливающиеся тяжестью облака и думает о дочери, о драйвере по имени Бода , о времени, о том, что все утекает, уходит от него и от всех остальных, и что все его так называемые друзья тянут из него деньги, и когда же наконец появится этот пиздюк пассажир!

Водитель икс-кэба Бода едет назад в Манчестер, только что сделав отличную ездку в Боттлтаун.

Он подрезал ее, вынудив грубо вылететь на тротуар, и Бода выпустила серпы.

Потом Бода попросила у Тошки бумерное ускорение, ушла от копов в точку, и вот она снова - королева дороги.

Министерство РФ по связи и информатизации

Сибирский государственный университет телекоммуникаций и информатики

ОСНОВЫ ПЕРЕДАЧИ

ДИСКРЕТНЫХ

СООБЩЕНИЙ

КОНТРОЛЬНАЯ РАБОТА № 1

Студент 5-го курса: Шерашов Михаил Валентинович

Группа: ЗМ-51

№ студ. билета: 951М-301

г. Новосибирск

Вариант № 01.

Задача № 1.

Передача информации ведётся стартстопным аппаратом кодом МТК-2. Скорость передачи составляет N знак/мин . Вероятности Р i появления символа типа «1» на информационных позициях приведены в задании. Здесь и в дальнейшем i = 2,...,6 (i соответствует номеру единичного элемента в кодовой комбинации).

Требуется:

1. Дать определение единицам измерения «бит », «бит/с », «Бод » .

2. Определить количество информации, приходящееся на каждый информационный единичный элемент кодовой комбинации I i бит/элемент .

3. Определить количество информации, содержащееся в кодовой комбинации (знаке) I зн бит/знак .

4. Определить скорость модуляции В Бод и скорость передачи информации С бит/с .

5. Указать две причины того, что С < В для кода МТК-2.

Исходные данные: Скорость передачи N = 400 знак/мин .

Решение.

1. «бит » - количественная оценка информации содержащейся в дискретном сообщении. 1 бит соответствует количеству информации, которое содержится в сообщении, устраняющем неопределенность путем выбора одного из двух равновероятных событий.

«бит/с » - скорость передачи информации. 1 бит/с – это скорость передачи, при которой количество информации в 1 бит передается за 1 секунду.

«Бод » - скорость модуляции (число единичных элементов, передаваемых в единицу времени). 1 Бод – это скорость модуляции, при которой 1 единичный элемент передается за 1 секунду.

2. Определяем количество информации, приходящийся на каждый информационный единичный элемент кодовой комбинации I i бит/элемент по формуле:

Вычисляем:

3. Определяем количество информации, содержащееся в кодовой комбинации (знаке) I зн бит/знак :

4. Зная скорость передачи знаков и количество единичных элементов, составляющих кодовую комбинацию, определяем скорость модуляции:

Для кода МТК-2 количество единичных элементов, составляющих кодовую комбинацию равно n = 7,5 элементов/знак .

Вычисляем скорость модуляции:

Зная скорость передачи знаков N , знак/с и количество информации, содержащееся в кодовой комбинации (знаке) I зн бит/знак определяем скорость передачи информации С , бит/с :

5. Причинами того, что для кода МТК-2 С < В являются:

1) не все элементы кода МТК-2 являются информационными. Кроме информационных элементов передаются стартовый и стоповый элементы, не несущие информации.

2) вероятности появления «1» на информационных позициях Р i ≠ 0,5, в результате чего количество информации, приходящееся на каждый информационный единичный элемент кодовой комбинации I i < 1бит .

Задача № 2.

Для циклического кода с минимальным кодовым расстоянием d 0 = 3 заданы последовательность и число информационных единичных элементов k = 4. Вероятность ошибки при приёме единичного элемента циклического кода равна Р 0 .

Требуется:

1. Построить кодовую комбинацию циклического кода (определить минимальное число проверочных единичных элементов r и длину кодовой комбинации n ).

2. Объяснить правило выбора образующего полинома Р (х ).

3. Объяснить, какие полиномы называются примитивными, пояснить, сколько остатков позволяют формировать примитивные полиномы.

4. Проверить правильность построения кодовой комбинации циклического кода путём деления на выбранный образующий полином Р (х ).

5. Построить структурную схему кодирующего устройства для выбранного кода.

6. Определить минимальное количество обнаруживаемых и исправляемых ошибок для циклического кода с минимальным кодовым расстоянием d 0 = 3.

7. Определить эквивалентную вероятность ошибки Р э при использовании циклического кода в режиме обнаружения ошибок.

8. Определить выигрыш в верности а = Р 0 /Р э .

Скорость последовательной передачи данных обычно обозначают термином битрейт (bit rate). Однако другой часто используемой единицей является скорость передачи в бодах (baud rate). Хотя это не одно и то же, при определенных обстоятельствах между обеими единицами существует определенное сходство. В статье дается четкое разъяснение различий между этими понятиями.

Общая информация

В большинстве случаев в сетях информация передается последовательно. Биты данных поочередно передаются по каналу связи, кабельному или беспроводному. На Рисунке 1 изображена последовательность бит, передаваемая компьютером или какой-либо другой цифровой схемой. Такой сигнал данных часто называют исходным. Данные представлены двумя уровнями напряжения, например, логической единице соответствует напряжение +3 В, а логическому нулю - +0.2 В. Могут использоваться и другие уровни. В формате кода без возврата к нулю (NRZ) (Рисунок 1) сигнал не возвращается к нейтральному положению после каждого бита, в отличие от формата с возвращением к нулю (RZ).

Битрейт

Скорость передачи данных R выражается в битах в секунду (бит/с или bps). Скорость является функцией продолжительности существования бита или времени бита (T B) (Рисунок 1):

Эту скорость называют также шириной канала и обозначают буквой C. Если время бита равно 10 нс, то скорость передачи данных определится как

R = 1/10 × 10 - 9 = 100 млн. бит/с

Обычно это записывается как 100 Мб/с.

Служебные биты

Битрейт, как правило, характеризует фактическую скорость передачи данных. Однако в большинстве последовательных протоколов данные являются только частью более сложного кадра или пакета, включающего в себя биты адреса источника, адреса получателя, обнаружения ошибок и коррекции кода, а также прочую информацию или биты управления. В кадре протокола данные называются полезной информацией (payload). Биты, не являющиеся данными, называются служебными (overhead). Иногда количество служебных бит может быть существенным - от 20% до 50%, в зависимости от общего числа полезных бит, передаваемых по каналу.

К примеру, кадр протокола Ethernet, в зависимости от количества полезных данных, может иметь до 1542 байт или октетов. Полезных данных может быть от 42 до 1500 октетов. При максимальном числе полезных октетов служебных будет только 42/1542, или 2.7%. Их было бы больше, если полезных байт было бы меньше. Это соотношение, известное также под названием эффективность протокола, обычно выражают в процентах количества полезных данных от максимального размера кадра:

Эффективность протокола = количество полезных данных/размер кадра = 1500/1542 = 0.9727 или 97.3%

Как правило, чтобы показать истинную скорость передачи данных по сети, фактическая скорость линии увеличивается на коэффициент, зависящий от количества служебной информации. В One Gigabit Ethernet фактическая скорость линии равна 1.25 Гб/с, тогда как скорость передачи полезных данных составляет 1 Гб/с. Для 10-Gbit/s Ethernet эти величины равны, соответственно, 10.3125 Гб/с и 10 Гб/с. При оценке скорости передачи данных по сети также могут использоваться такие понятия, как пропускная способность, скорость передачи полезных данных или эффективная скорость передачи данных.

Скорость передачи в бодах

Термин «бод» происходит от фамилии французского инженера Эмиля Бодо (Emile Baudot), который изобрел 5-битовый телетайпный код. Скорость передачи в бодах выражает количество изменений сигнала или символа за одну секунду. Символ - это одно из нескольких изменений напряжения, частоты или фазы.

Двоичный формат NRZ имеет два представляемых уровнями напряжения символа, по одному на каждый 0 или 1. В этом случае скорость передачи в бодах или скорость передачи символов - то же самое, что и битрейт. Однако на интервале передачи можно иметь более двух символов, в соответствии с чем на каждый символ отводится несколько бит. При этом данные по любому каналу связи могут передаваться только с помощью модуляции.

Когда средство передачи не может обработать исходный сигнал, на первый план выходит модуляция. Конечно, речь идет о беспроводных сетях. Исходные двоичные сигналы не могут передаваться непосредственно, они должны переноситься на несущую радиочастоту. В некоторых протоколах кабельной передачи данных также применяется модуляция, позволяющая повысить скорость передачи. Это называется «широкополосной передачей».
Выше: модулирующий сигнал, исходный сигнал

Используя составные символы, в каждом можно передавать по несколько бит. Например, если скорость передачи символов равна 4800 бод, и каждый символ состоит из двух бит, полная скорость передачи данных будет 9600 бит/с. Обычно количество символов представляется какой-либо степенью числа 2. Если N - количество бит в символе, то число требуемых символов будет S = 2N. Таким образом, полная скорость передачи данных:

R = скорость в бодах × log 2 S = скорость в бодах × 3.32 log 1 0 S

Если скорость в бодах равна 4800, и на символ отводится два бита, количество символов 22 = 4.

Тогда битрейт равен:

R = 4800 × 3.32log(4) = 4800 × 2 = 9600 бит/с

При одном символе на бит, как в случае с двоичным форматом NRZ, скорости передачи в битах и бодах совпадают.

Многоуровневая модуляция

Высокий битрейт можно обеспечить многими способами модуляции. Например, при частотной манипуляции (FSK) в каждом символьном интервале для представления логических 0 и 1 обычно используются две различные частоты. Здесь скорость передачи в битах равна скорости передачи в бодах. Но если каждый символ представляет два бита, то требуются четыре частоты (4FSK). В 4FSK скорость передачи в битах в два раза превышает скорость в бодах.

Еще одним распространенным примером является фазовая манипуляция (PSK). В двоичной PSK каждый символ представляет 0 или 1. Двоичному 0 соответствует 0°, а двоичной 1 - 180°. При одном бите на символ скорость в битах равна скорости в бодах. Однако соотношение числа бит и символов несложно увеличить (см. Таблицу 1).

Таблица 1. Двоичная фазовая манипуляция.

Биты

Фазовый сдвиг (градусов)

Например, в квадратурной PSK на один символ приходится два бита. При использовании такой структуры и двух бит на бод скорость передачи в битах превышает скорость в бодах в два раза. При трех битах на один бод модуляция получит обозначение 8PSK, и восемь различных фазовых сдвигов будут представлять три бита. А при 16PSK 16 фазовых сдвигов представляют 4 бита.

Одной из уникальных форм многоуровневой модуляции является квадратурная амплитудная модуляция (QAM). Для создания символов, представляющих множество битов, QAM использует комбинацию различных уровней амплитуд и смещений фаз. Например, 16QAM кодирует четыре бита на символ. Символы представляют собой сочетание различных уровней амплитуды и фазовых сдвигов.

Для наглядного отображения амплитуды и фазы несущей для каждого значения 4-битного кода используется квадратурная диаграмма, имеющая также романтическое название «сигнальное созвездие» (Рисунок 2). Каждая точке соответствует определенная амплитуда несущей и фазовый сдвиг. В общей сложности 16 символов кодируются четырьмя битами на символ, в результате чего битрейт превышает скорость передачи в бодах в 4 раза.

Почему несколько бит на бод?

Передавая больше одного бита на бод можно отправлять данные с высокой скоростью по более узкому каналу. Следует напомнить, что максимально возможная скорость передачи данных определяется пропускной способностью канала передачи.
Если рассмотреть наихудший вариант чередования нулей и единиц в потоке данных, то максимальная теоретическая скорость передачи C в битах для данной полосы пропускания B будет равна:

Или полоса пропускания при максимальной скорости:

Для передачи сигнала со скоростью 1 Мб/с требуется:

B = 1/2 = 0.5 МГц или 500 кГц

При использовании многоуровневой модуляции с несколькими битами на символ максимальная теоретическая скорость передачи данных будет равна:

Здесь N - количество символов в символьном интервале:

log 2 N = 3.32 log10N

Полоса пропускания, требуемая для обеспечения желаемой скорости при заданном количестве уровней, вычисляется следующим образом:

Например, полоса пропускания, необходимая для достижения скорости передачи 1 Мб/с при двух битах на один символ и четырех уровнях, может быть определена как:

log 2 N = 3.32 log 10 (4) = 2

B = 1/2(2) = 1/4 = 0.25 МГц

Количество символов, необходимых для получения желаемой скорости передачи данных в фиксированной полосе пропускания, может быть вычислено как:

3.32 log 10 N = C/2B

Log 10 N = C/2B = C/6.64B

N = log-1 (C/6.64B)

Используя предыдущий пример, количество символов, необходимых для передачи со скоростью 1 Мб/с по каналу 250 кГц, определится следующим образом:

log 10 N = C/6.64B = 1/6.64(0.25) = 0.60

N = log-1 (0.602) = 4 символа

Эти расчеты предполагают, что в канале отсутствуют шумы. Для учета шума нужно применить теорему Шеннона-Хартли:

C = B log 2 (S/N + 1)

C -пропускная способность канала в битах в секунду,
В - полоса пропускания канала в герцах,
S/N -отношение сигнал/шум.

В форме десятичного логарифма:

C = 3.32B log 10 (S/N + 1)

Какова максимальная скорость в канале 0.25 МГц с отношением S/N равным 30 дБ? 30 дБ переводится в 1000. Следовательно, максимальная скорость:

C = 3.32B log 10 (S/N + 1) = 3.32(0.25) log 10 (1001) = 2.5 Мб/с

Теорема Шеннона-Хартли конкретно не утверждает, что для достижения этого теоретического результата должна применяться многоуровневая модуляция. Используя предыдущую процедуру, можно узнать, сколько бит требуется на один символ:

log 10 N = C/6.64B = 2.5/6.64(0.25) = 1.5

N = log-1 (1.5) = 32 символа

Использование 32 символов подразумевает пять бит на символ (25 = 32).

Примеры измерения скорости передачи в бодах

Практически все высокоскоростные соединения используют какие-либо формы широкополосной передачи. В Wi-Fi в схемах модуляции с мультиплексированием с ортогональным частотным разделением каналов (OFDM) применяются QPSK, 16QAM и 64QAM.

То же самое верно для WiMAX и технологии сотовой связи Long-Term Evolution (LTE) 4G. Передаче сигналов аналогового и цифрового телевидения в системах кабельноого ТВ и высокоскоростного доступ в Интернет основана на 16QAM и 64QAM, в то время как в спутниковой связи используют QPSK и различные версии QAM.

Для систем наземной мобильной радиосвязи, обеспечивающих общественную безопасность, недавно были приняты стандарты модуляции речевой информации и данных с помощью 4FSK. Этот сужающий полосу пропускания способ разработан для сокращения полосы с 25 кГц на канал до 12.5 кГц, и, в конечном счете, до 6.25 кГц. В результате в том же спектральном диапазоне можно разместить больше каналов для других радиостанций.

Телевидение высокой четкости в США использует метод модуляции, называемый eight-level vestigial sideband (8-уровневая передача сигналов с частично подавленной боковой полосой), или 8VSB. В этом методе отводится три бита на символ при 8 уровнях амплитуды, что позволяет передавать 10,800 тыс. символов в секунду. При 3 битах на символ полная скорость будет равна 3 × 10,800,000 = 32.4 Мб/с. В сочетании с методом VSB, который передает только одну полную боковую полосу частот и часть другой, видео- и аудиоданные высокой четкости могут передаваться по телевизионному каналу шириной 6 МГц.